If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2+x=9999
We move all terms to the left:
64x^2+x-(9999)=0
a = 64; b = 1; c = -9999;
Δ = b2-4ac
Δ = 12-4·64·(-9999)
Δ = 2559745
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{2559745}}{2*64}=\frac{-1-\sqrt{2559745}}{128} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{2559745}}{2*64}=\frac{-1+\sqrt{2559745}}{128} $
| 170-2y-4=0 | | 6n+11=n-4 | | x+.06x=47.70 | | R=7n+3 | | (n×9)+4=58 | | 5x+5+x+15+6x-10=180 | | Y=2x^2-3x+1Y=5x+1 | | 8x-5=1x+9 | | 10=m+99 | | x2+12x+30=−5 | | w−15=−4 | | (x)=2x^2+16x-24 | | 10+6n=5n+5 | | Y=-15/4x+14 | | 1-7x+6x=-6 | | 17+2u=15 | | x+9(4)=41 | | 2(2x-5)=-13 | | -23x+x=28 | | 3x+3=1+4x | | 36/s=9 | | X=15-0.5y | | 4(7+3n)=-12+4n | | 3n+18=39+-4n | | 3x-8x+7=22 | | 36=-4x+48 | | 1-5x=-7x-7 | | 24=-71x | | 23-3k=14 | | 12(4x-1)^2+17(4x-1)-5=0 | | 4.21=2.98+s | | 3x÷2=9 |